
V. Statistical analysis in R (presentation)

Data Science Lab, University of Copenhagen

August 2025

Structure of a statistical analysis in R
The very basic structure of an R script doing a classical statistical analysis is as follows:

1. Load packages that you will be using.

2. Read the dataset to be analyzed. Possibly also do some data cleaning and manipulation.

3. Visualize the dataset by graphics and other descriptive statistics.

4. Fit and validate a statistical model.

5. Hypothesis testing. Possibly also post hoc testing.

6. Visualize and/or report: model parameters and/or model predictions.

Of course there are variants of this set-up, and in practice there will often be some iterations of the steps.

In this manuscript we will examplify the proposed steps in the analysis of two simple datasets:

A) One-way ANOVA of the expression of the IGFL4 gene against the skin type in psoriasis patients.

B) Multiple linear regression of volume of cherry trees against their diameter and height.

Step 1: Load packages For both examples we will use ggplot2 to make plots, and to be prepared for
data manipulations we simply load this together with the rest of the tidyverse. Moreover, we will also use
extra plotting functionalities from the ggfortify and GGally packages.

The psoriasis data are provided in an Excel sheet, so we also load readxl. Finally, we will use the package
emmeans to make post hoc tests and to report model predictions.

Remember that you should install the wanted packages before they can be used (but you only need to install
the packages once!) To take full advantage of the emmeans package you should also install the packages
multcomp and multcompView packages.

Thus,
#install.packages("tidyverse")
#install.packages("ggfortify")
#install.packages("GGally")
#install.packages("readxl")
#install.packages("emmeans")
#install.packages("multcomp")
#install.packages("multcompView")
#install.packages("lme4")
library(tidyverse)
library(ggfortify)
library(GGally)
library(readxl)

1

library(emmeans)
library(multcomp)
library(multcompView)
library(lme4)

Now we have done step 1 for both analyses. Next we will look specifically at the two examples. Finally, we
conclude with a brief outlook on other statistical models in R.

Example A: Analysis of variance
Step 2: Data Psoriasis is an immune-mediated disease that affects the skin. Researchers carried out an
micro-array experiment with skin from 37 people in order to examine a potential association between the
disease and a certain gene (IGFL4). For each of the 37 samples the gene expression was measured as an
intensity. Fifteen skin samples were from psoriasis patients and from a part of the body affected by the
disease (psor); 15 samples were from psoriasis patients but from a part of the body not affected by the
disease (psne); and 7 skin samples were from healthy people (control).

The data are saved in the file psoriasis.xlsx. At first the variable type is stored as a character variable we
change it to a factor (and check that indeed there are 15, 15 and 7 patients in the three groups).
psorData <- read_excel("psoriasis.xlsx")
psorData

A tibble: 37 x 3
type intensity typeNum
<chr> <dbl> <dbl>
1 psne 0.841 1
2 psne 0.955 1
3 psne 1.07 1
4 psne 1.11 1
5 psne 1.18 1
6 psne 1.20 1
7 psne 1.32 1
8 psne 1.30 1
9 psne 1.39 1
10 psne 1.41 1
i 27 more rows
psorData <- mutate(psorData, type = factor(type))
count(psorData, type)

A tibble: 3 x 2
type n
<fct> <int>
1 healthy 7
2 psne 15
3 psor 15

Step 3: Descriptive plots and statistics To get an impression of the data we make two plots and
compute group-wise means and standard deviations.
ggplot(psorData, aes(x=type, y=intensity)) +

geom_point() +
labs(x="Skin type", y="Intensity")

ggplot(psorData, aes(x=type, y=intensity)) +

2

geom_boxplot() +
labs(x="Skin type", y="Intensity")

psorData %>%
group_by(type) %>%
summarise(avg=mean(intensity), sd=sd(intensity))

A tibble: 3 x 3
type avg sd
<fct> <dbl> <dbl>
1 healthy 1.34 0.230
2 psne 1.39 0.363
3 psor 0.955 0.255

1.0

1.5

2.0

healthy psne psor
Skin type

In
te

ns
ity

1.0

1.5

2.0

healthy psne psor
Skin type

In
te

ns
ity

Step 4: Fit of oneway ANOVA, model validation The scientific question is whether the gene expression
level differs between the three types/groups. Thus, the natural type of analysis is a oneway analysis of
variance (ANOVA). The oneway ANOVA is fitted with lm. It is a good approach to assign a name (below
oneway) to the object with the fitted model. This object contains all relevant information and may be used
for subsequent analysis. Note that we have logarithmic transformed the response as intensities often live on a
multiplicative scale.
oneway <- lm(log(intensity) ~ type, data=psorData)
oneway

##
Call:
lm(formula = log(intensity) ~ type, data = psorData)
##
Coefficients:
(Intercept) typepsne typepsor
0.27910 0.01724 -0.35794

Mathematically this model makes assumptions about linearity (which, however, will always be satisfied for a
oneway ANOVA – why?), variance homogeneity, and normality. These assumptions are checked visually via
four plots generated from the model residuals. In R it is easy to make these plots; simply apply plot on the
lm-object.
par(mfrow=c(2,2)) # makes room for 4=2x2 plots!
plot(oneway)

3

0.0 0.1 0.2 0.3

−
0.

4
0.

2

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

116

15

−2 −1 0 1 2

−
2

0
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

1 16

15

0.0 0.1 0.2 0.3

0.
0

0.
8

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
116 15

0.00 0.04 0.08 0.12
−

2
0

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

37

116

The model validation plots do not show any evident problems.

Remark: Using the autoplot() function from the ggfortify package you can also make a ggplot-version of
these plots. This can be aesthetically more pleasing, you avoid calling the par() function, and there is more
room for the plot on a small laptop screen. But mathematically it is the same plots that will be produced!
autoplot(oneway)

4

116

15

−0.50

−0.25

0.00

0.25

0.0 0.1 0.2 0.3
Fitted values

R
es

id
ua

ls
Residuals vs Fitted

1 16

15

−2

−1

0

1

2

−2 −1 0 1 2
Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

116 15

0.5

1.0

0.0 0.1 0.2 0.3
Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location

37

116−2

−1

0

1

2

0.00 0.05 0.10 0.15
Leverage

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Residuals vs Leverage

Step 5: Hypothesis test + Post hoc tests It is standard to carry out an F -test for the overall effect of
the explanatory variable. To be precise, the hypothesis is that the expected values are the same in all groups.
The most easy way to do this test is to use drop1. The option test="F" is needed to get the F -test:
drop1(oneway,test="F")

Single term deletions
##
Model:
log(intensity) ~ type
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 2.0924 -100.286
type 2 1.2204 3.3128 -87.286 9.9153 0.0004052 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Thus, the overall test for homogeneity between the groups show, that the groups are not all the same. But it
might be that the gene expression in two of the three groups, say, are not significantly different. To investigate
that we do post hoc testing. This is nicely done within the framework of estimated marginal means using
the emmeans package. Here emmeans makes the estimated marginal means (that is the predicted gene
expression intensity on the log scale), and the pairs command provide post hoc pairwise comparisons:
emmeans(oneway, ~type)

type emmean SE df lower.CL upper.CL
healthy 0.2791 0.0938 34 0.0885 0.4696
psne 0.2963 0.0641 34 0.1662 0.4265
psor -0.0788 0.0641 34 -0.2090 0.0513

5

##
Results are given on the log (not the response) scale.
Confidence level used: 0.95
pairs(emmeans(oneway, ~type))

contrast estimate SE df t.ratio p.value
healthy - psne -0.0172 0.1140 34 -0.152 0.9874
healthy - psor 0.3579 0.1140 34 3.152 0.0092
psne - psor 0.3752 0.0906 34 4.142 0.0006
##
Results are given on the log (not the response) scale.
P value adjustment: tukey method for comparing a family of 3 estimates

It can be convenient to summarize the pairwise comparisons in the so-called compact letter display. Here a
grouping is performed such that groups not sharing a letter are significantly different. Previous versions of
the emmeans package had a function for doing this (called CLD). However, the author of the emmeans
package does not approve of this way of displaying the results, and consequently he has removed the CLD
function from the package! But instead you can use the cld function from the multcomp package. Notice
that both the multcomp and the ****multcompView** package must be installed and loaded.

Using the syntax multcomp::cld we may avoid loading the multcomp package. Long story short; here is
the code:
cld(emmeans(oneway, ~type))

type emmean SE df lower.CL upper.CL .group
psor -0.0788 0.0641 34 -0.2090 0.0513 1
healthy 0.2791 0.0938 34 0.0885 0.4696 2
psne 0.2963 0.0641 34 0.1662 0.4265 2
##
Results are given on the log (not the response) scale.
Confidence level used: 0.95
P value adjustment: tukey method for comparing a family of 3 estimates
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
then we cannot show them to be different.
But we also did not show them to be the same.

We see that the “grouping letters” appearing in the column .group actually are numbers. But the interpreta-
tion is the same. Namely that psor (letter=1) is significantly different from both healthy (letter=2) and
psne (letter=2), whereas that two latter are not significantly different (they share the letter “2”). Note: If
you want actual letters instead of digits, then add the option Letters=letters.

Or restated in biological terms: The groups healthy and psne appears to have the same expression of the
IGFL4 gene, and this expression is significantly larger than in the psor group. Biologically this is consistent
with the IGFL4 gene being related to psoriasis as psne corresponds to skin not affected by the disease.

Step 6: Report of model parameters In this example it is natural to report the estimated intensities as
well as the comparisons between the 3 groups. As the analysis was done using a log transformation it is also
advisable to backtransform. Both things can be done automatically by the emmeans package, where the
option type="response" (here type is the name of an option inside the R command, and it is a coincidence
that it has the same name as the variable type) requests the backtransformation:
emmeans(oneway, ~type, type="response")

type response SE df lower.CL upper.CL
healthy 1.322 0.1240 34 1.093 1.60

6

psne 1.345 0.0861 34 1.181 1.53
psor 0.924 0.0592 34 0.811 1.05
##
Confidence level used: 0.95
Intervals are back-transformed from the log scale
confint(pairs(emmeans(oneway, ~type, type="response")))

contrast ratio SE df lower.CL upper.CL
healthy / psne 0.983 0.112 34 0.744 1.30
healthy / psor 1.430 0.162 34 1.083 1.89
psne / psor 1.455 0.132 34 1.166 1.82
##
Confidence level used: 0.95
Conf-level adjustment: tukey method for comparing a family of 3 estimates
Intervals are back-transformed from the log scale

Although we don’t recommend usage of standard errors in the context of backtransformed parameters, we see
that a standard error is provided on the backtransformed parameters.

Iteration of step 3 to step 6 Actually the used statistical model is wrong! At least there appears to be a
strong correlation between the n’th obserservations of psne of psor. This is evident from the following two
descriptive statistics:
correlation
cor(psorData$intensity[1:15], psorData$intensity[16:30])

[1] 0.9609382
scatter plot
qplot(x=psorData$intensity[1:15], y=psorData$intensity[16:30]) +

geom_point() +
geom_abline(intercept=0,slope=1) +
coord_equal(xlim=c(0.6,2.1),ylim=c(0.6,2.1))

Warning: `qplot()` was deprecated in ggplot2 3.4.0.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.

7

1.0

1.5

2.0

1.0 1.5 2.0
psorData$intensity[1:15]

ps
or

D
at

a$
in

te
ns

ity
[1

6:
30

]

What is going on here?

The first 30 observations presumably do not come from 30 different people, but are rather two measurements
from each of 15 people, one from an affected skin area and one from non-affected area. In that case, the
correct analysis should include a random effect of person. First we introduce the apparently missing variable
in the dataset:
psorData$Id <- factor(c(1:15,1:15,16:22))

Then we can do the correct mixed effects model using the lmer() function from the lme4 package:
oneway_with_random_effect <- lmer(log(intensity) ~ type + (1|Id), data=psorData)

The syntax used in the other steps now change a bit at some places due to the usage of the lme4 package.
We will not do all the steps here, but for comparison let’s check that the preferred analysis including the
random effect indeed is more powerful:
drop1(oneway, test="F")

Single term deletions
##
Model:
log(intensity) ~ type
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 2.0924 -100.286
type 2 1.2204 3.3128 -87.286 9.9153 0.0004052 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8

drop1(oneway_with_random_effect, test="Chisq")

Single term deletions
##
Model:
log(intensity) ~ type + (1 | Id)
npar AIC LRT Pr(Chi)
<none> -34.542
type 2 20.442 58.984 1.555e-13 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Example B: Simple and multiple linear regression
Step 2: Data For the first part of the presentation we will use data from 31 cherry trees available in the
built in dataset trees: Girth, height and tree volume have been measured for each tree. Please note, that the
help page ?trees states, that girth is the tree diameter. Interest is in the association between tree volume on
the one side and girth and height on the other side.
data(trees)

Step 3: Visualization of raw data We start by plotting the data. If you plot a data frame, then you
get a display of pairwise scatter plots (using Base R graphics):
plot(trees)

Girth

65
75

85

8 12 16 20

65 75 85

Height

8
12

16
20

10 30 50 70

10
30

50
70

Volume

A more fancy version of this is available in GGally, where the diagonal is used to visualize the marginal
distribution of the three tree variables:
ggpairs(trees)

9

Corr:

0.519**

Corr:

0.967***

Corr:

0.598***

Girth Height Volume

G
irth

H
eight

V
olum

e

8 12 16 20 70 80 20 40 60 80

0.00

0.05

0.10

70

80

20

40

60

80

Step 4: Fitting and validating a simple linear regression model We start out with a simple linear
regression with volume as outcome and girth as covariate. This model is fitted with the lm function. It is a
good approach to assign a name (below linreg1) to the object with the fitted model. This object contains all
relevant information and may be used for subsequent analysis.
linreg1 <- lm(Volume~Girth, data=trees)
linreg1

##
Call:
lm(formula = Volume ~ Girth, data = trees)
##
Coefficients:
(Intercept) Girth
-36.943 5.066

Mathematically this model makes assumptions about linearity, variance homogeneity, and normality. These
assumptions are checked visually via four plots generated from the model residuals. In R it is easy to make
these plots; simply apply plot on the lm-object.
par(mfrow=c(2,2)) # makes room for 4=2x2 plots!
plot(linreg1)

10

10 20 30 40 50 60

−
10

0
10

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

31

2019

−2 −1 0 1 2

−
2

0
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals
31

20 19

10 20 30 40 50 60

0.
0

1.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
31

2019

0.00 0.05 0.10 0.15 0.20
−

2
0

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance 0.5

0.5
1

Residuals vs Leverage
31

128

In this case there appears to be problems with the model. In particular, the upper left plot shows a quadratic
tendency suggesting that the linearity assumption is not appropriate. Perhaps a data transformation can
help us out.

Step 4 iterated: Transformation The linear regression model above says that an increment of ∆g of
girth corresponds to an increment of volume by β∆g where β is the slope parameter, i.e., interpretation is
concerned with absolute changes. Perhaps it is more reasonable to talk about relative changes: An increment
of girth by a factor cg corresponds to an increment of volume of γcg. This corresponds to a linear regression
model on the log-transformed variables, which is easily fitted. Notice that log in R is the natural logarithm.
linreg2 <- lm(log(Volume) ~ log(Girth), data=trees)
par(mfrow=c(2,2))
plot(linreg2)

11

2.5 3.0 3.5 4.0

−
0.

2
0.

1

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

17

20

11

−2 −1 0 1 2

−
1

1

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals
17

11

20

2.5 3.0 3.5 4.0

0.
0

1.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
17

11 20

0.00 0.05 0.10 0.15
−

2
0

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance
0.5

0.5

Residuals vs Leverage
17 11

3

The statistical validity of this model is much better! Which is nice as it also has a much more meaningful
biological/physical interpretation!

Step 6: Report of the model Parameter estimates, standard errors are computed and certain hypothesis
tests are carried out by the summary function:
summary(linreg2)

##
Call:
lm(formula = log(Volume) ~ log(Girth), data = trees)
##
Residuals:
Min 1Q Median 3Q Max
-0.205999 -0.068702 0.001011 0.072585 0.247963
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.35332 0.23066 -10.20 4.18e-11 ***
log(Girth) 2.19997 0.08983 24.49 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.115 on 29 degrees of freedom
Multiple R-squared: 0.9539, Adjusted R-squared: 0.9523
F-statistic: 599.7 on 1 and 29 DF, p-value: < 2.2e-16

The coefficient table is the most important part of the output. It has two lines — one for each parameter in
the model — and four columns. The first line is about the intercept, the second line is about the slope. The
columns are

12

• Estimate: The estimated value of the parameter (intercept or slope).
• Std. Error: The standard error (estimated standard deviation) associated with the estimate in the

first column.
• t value: The t-test statistic for the hypothesis that the corresponding parameter is zero. Computed

as the estimate divided by the standard error.
• Pr(>|t|): The p-value associated with the hypothesis just mentioned. In particular the p-value in the

second line is for the hypothesis that there is no effect of girth on volume.

Below the coefficient table you find, among others, the Residual standard error, i.e., the estimated
standard deviation for the observations.

If you prefer to report confidence intervals for the parameters (intercept and slope) instead of standard error
then use confint:
confint(linreg2)

2.5 % 97.5 %
(Intercept) -2.825083 -1.881566
log(Girth) 2.016238 2.383702

Finally, don’t forget to make the mathematical interpretation of the model and its parameter estimates!
Thus, the model postulates the relation

ln V ≈ α + β ln G

with estimates α̂ = −2.353 and β̂ = 2.200. This corresponds to V ≈ eα · Gβ , and we see that an increment of
girth by 10%, say, corresponds to an increment of volume by a factor of 1.12.2 = 1.23, that is, by 23%.

Step 6: Visualization of the model An excellent synthesis of a statistical analysis is often provided by
a plot combining the raw data with the model fit.

The estimated regression line can be added to a scatter plot in different ways (and with/without corresponding
standard error curves):
ggplot(trees, aes(x=log(Girth), y =log(Volume))) +

geom_point() +
geom_abline(intercept=-2.35332, slope=2.19997, col="red")

2.5

3.0

3.5

4.0

2.25 2.50 2.75 3.00
log(Girth)

lo
g(

V
ol

um
e)

ggplot(trees, aes(x=Girth, y=Volume)) +
geom_point() +
geom_smooth(method="lm", se=TRUE) +

13

scale_x_log10() +
scale_y_log10()

`geom_smooth()` using formula = 'y ~ x'

10

30

50

8 10 20
Girth

V
ol

um
e

Step 4 iterated: Multiple linear regression Several covariates can be included in a regression model,
corresponding to multiple linear regression; simply write a plus between the covariates. Here is fitting of a
model with log-girth as well as log-height included as explanatory variables:
linreg3 <- lm(log(Volume) ~ log(Girth) + log(Height), data=trees)
summary(linreg3)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.631617 0.79978973 -8.291701 5.057138e-09
log(Girth) 1.982650 0.07501061 26.431592 2.422550e-21
log(Height) 1.117123 0.20443706 5.464388 7.805278e-06

Don’t forget to do model validation:
par(mfrow=c(2,2))
plot(linreg3)

14

2.5 3.0 3.5 4.0

−
0.

20
0.

05

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

15 1816

−2 −1 0 1 2

−
2

0
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Q−Q Residuals

18 15 16

2.5 3.0 3.5 4.0

0.
0

1.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
1815 16

0.00 0.05 0.10 0.15 0.20 0.25
−

2
0

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance 0.5

0.5
Residuals vs Leverage

18

1711

Step 5: Hypothesis test The F -test for comparison of two nested models may be carried out by the
anova function. For example, linreg3 is nested in linreg2, and the comparison between the two corresponds
to the hypothesis that there is no extra information in height when girth is included (on log-scale).
anova(linreg3, linreg2)

Analysis of Variance Table
##
Model 1: log(Volume) ~ log(Girth) + log(Height)
Model 2: log(Volume) ~ log(Girth)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 28 0.18546
2 29 0.38324 -1 -0.19778 29.86 7.805e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

However, as an alternative to anova it is more simple to use the drop1 command, which makes all the tests
corresponding to removal of one of the explanatory variables. If you want p-values, then ask for F -tests:
drop1(linreg3,test="F")

Single term deletions
##
Model:
log(Volume) ~ log(Girth) + log(Height)
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 0.1855 -152.685
log(Girth) 1 4.6275 4.8130 -53.743 698.63 < 2.2e-16 ***
log(Height) 1 0.1978 0.3832 -132.185 29.86 7.805e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

15

We see that anova and drop1 give the same p-value (p = 7.8 ∗ 10−6) for the effect of log(Height). And in a
Gaussian model (like this) this coincides with the p-value from the t-test for the hypothesis that there is no
effect of a single numerical covariate. Thus,
summary(linreg3)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.631617 0.79978973 -8.291701 5.057138e-09
log(Girth) 1.982650 0.07501061 26.431592 2.422550e-21
log(Height) 1.117123 0.20443706 5.464388 7.805278e-06

So should you do all three tests? Definitely not!

• In general it is not recommendable to use summary for doing tests: The F -tests and t-tests only coincide
for hypothesis on a single parameter. And you may also be deceived by the model parametrizations
when interpreting t-tests.

• To use drop1 you only need to fit the large model (here linreg3). Thus, it gives shorter and more easily
readable R code.

Use of pipe operator
Although we did not use it systematically in the above, the pipe operator may increase readability of the
code. For example, the two commands below do exactly the same:
confint(pairs(emmeans(oneway, ~type, type="response")))

contrast ratio SE df lower.CL upper.CL
healthy / psne 0.983 0.112 34 0.744 1.30
healthy / psor 1.430 0.162 34 1.083 1.89
psne / psor 1.455 0.132 34 1.166 1.82
##
Confidence level used: 0.95
Conf-level adjustment: tukey method for comparing a family of 3 estimates
Intervals are back-transformed from the log scale
oneway %>% emmeans(~type, type="response") %>% pairs() %>% confint()

contrast ratio SE df lower.CL upper.CL
healthy / psne 0.983 0.112 34 0.744 1.30
healthy / psor 1.430 0.162 34 1.083 1.89
psne / psor 1.455 0.132 34 1.166 1.82
##
Confidence level used: 0.95
Conf-level adjustment: tukey method for comparing a family of 3 estimates
Intervals are back-transformed from the log scale

Outlook: Other analyses
The lm function is used for linear models, that is, models where data points are assumed to be independent
with a Gaussian distribution (and typically also with the same variance). Obviously this class of models is
not always appropriate, and there exists functions for many, many more situations and data types. Here we
just mention a few functions corresponding to common data types and statistical problems.

• glm(): For independent, but non-Gaussian data. Examples are binary outcomes (logistic regression)
and outcomes that are counts (Poisson regression). glm is short for generalized linear models, and the
glm() function is part of the base installation of R. Remark: SAS users should not confuse this with
PROC GLM, which does linear normal models like lm().

16

• lmer() and glmer(): For data with dependence structures that can be described by random effects,
e.g., block designs. lme is short for linear mixed effects (Gaussian data), glmer is short for generalized
linear mixed effects (binary or count data). Both functions are part of the lme4 package. Actually, we
did touch upon a mixed effects model above.

• nls(): For non-linear regression, e.g., dose-response analysis. nls is short for non-linear least squares.
The function is included in the base installation of R.

The functions mentioned above are used in a similar way as lm(): a model is fitted with the function
in question, and the model object subsequently examined with respect to model validation, estimation,
computation of confidence limits, hypothesis tests, prediction, etc. with functions summary(), confint(),
drop1(), predict(), emmeans(), pairs() as indicated above.

End of presentation.

17

	Structure of a statistical analysis in R
	Example A: Analysis of variance
	Example B: Simple and multiple linear regression
	Use of pipe operator
	Outlook: Other analyses

