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Data

1. We load the MASS package to get access to the birthwt dataset and make the relevant manipulations
of the dataset. In the end, notice how levels 3-6 of ftvFac are collapsed into one level denoted
“MoreThanOnce”.
# Load MASS package
library(MASS)

### Open help page for birthwt
?birthwt

2. The tidyverse package is needed to make tibbles, so it is loaded first. Then, we construct the tibble.
### Make a tibble with the data
library(tidyverse)
birthData <- as_tibble(birthwt)
birthData

## # A tibble: 189 x 10
## low age lwt race smoke ptl ht ui ftv bwt
## <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
## 1 0 19 182 2 0 0 0 1 0 2523
## 2 0 33 155 3 0 0 0 0 3 2551
## 3 0 20 105 1 1 0 0 0 1 2557
## 4 0 21 108 1 1 0 0 1 2 2594
## 5 0 18 107 1 1 0 0 1 0 2600
## 6 0 21 124 3 0 0 0 0 0 2622
## 7 0 22 118 1 0 0 0 0 1 2637
## 8 0 17 103 3 0 0 0 0 1 2637
## 9 0 29 123 1 1 0 0 0 1 2663
## 10 0 26 113 1 1 0 0 0 0 2665
## # i 179 more rows

3. We recode the smoke variable from a numerical variable to a categorical one.
### Make smoke into a factor
birthData <- mutate(birthData, smoke = factor(smoke))

4. We examine the ftv variable, then construct a categorical version of the ftv variable, then make a
version where levels 2 and above are collapsed into just one level.
# Check the ftv variable, make it a factor and collapse some of the levels
table(birthData$ftv)

##
## 0 1 2 3 4 6
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## 100 47 30 7 4 1
birthData <- mutate(birthData, ftvFac = factor(ftv))
birthData <- mutate(birthData,

visits = fct_collapse(ftvFac, Never="0", Once="1", other_level="MoreThanOnce"))
table(birthData$visits, birthData$ftvFac)

##
## 0 1 2 3 4 6
## Never 100 0 0 0 0 0
## Once 0 47 0 0 0 0
## MoreThanOnce 0 0 30 7 4 1
birthData %>% group_by(ftvFac, visits) %>% count()

## # A tibble: 6 x 3
## # Groups: ftvFac, visits [6]
## ftvFac visits n
## <fct> <fct> <int>
## 1 0 Never 100
## 2 1 Once 47
## 3 2 MoreThanOnce 30
## 4 3 MoreThanOnce 7
## 5 4 MoreThanOnce 4
## 6 6 MoreThanOnce 1

5. We make boxplots for bwt for different levels of one or more variables. Birth weight appears to be
smaller for infants born by smokers compared to non-smokers, while birth weight does not appear to
depend on the frequency of vistis to the doctor. This is just preliminary consideratiions; formal analyses
are carried out later.
### Parallel boxplots
ggplot(birthData, aes(x=visits, y=bwt)) + geom_boxplot()
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ggplot(birthData, aes(x=smoke, y=bwt)) + geom_boxplot()
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ggplot(birthData, aes(x=visits, y=bwt, color=smoke)) + geom_boxplot() + facet_wrap(~smoke)
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6. Scatterplot with lwt on the x-axis and bwt on the y-axis. The color and shape of the points can be
controlled by the options color and shape. There is no clear association between the two variables
(mother’s weight before pregnancy and infant weight), but let us see in the analysis.
### Scatter plot
ggplot(birthData, aes(x=lwt, y=bwt)) + geom_point()
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### Points coloured after visits
ggplot(birthData, aes(x=lwt, y=bwt, color=visits)) + geom_point()
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### Points coloured after visits, point types after smoke status
ggplot(birthData, aes(x=lwt, y=bwt, color=visits, shape=smoke)) + geom_point()
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Regression

7. We use the lm function to fit the simple linear regression model with infant’s birth weight as response
and mothers weight before pregnancy as predictor. Then, we extract estimates and confidence intervals
(CIs). Specifically we get a 95% CI 1.05-7.81 for the slope parameter. Notice that zero is not included
in the CI, in line with the p-value of 0.01 which appears in the summary. So, despite the impression
from the scatter plot above, there is a significant association between the two variables.
### Simple linear regression
reg1 <- lm(bwt ~ lwt, data=birthData)
summary(reg1)

##
## Call:
## lm(formula = bwt ~ lwt, data = birthData)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2192.12 -497.97 -3.84 508.32 2075.60
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2369.624 228.493 10.371 <2e-16 ***
## lwt 4.429 1.713 2.585 0.0105 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 718.4 on 187 degrees of freedom
## Multiple R-squared: 0.0345, Adjusted R-squared: 0.02933
## F-statistic: 6.681 on 1 and 187 DF, p-value: 0.0105
confint(reg1)

## 2.5 % 97.5 %
## (Intercept) 1918.867879 2820.37916
## lwt 1.048845 7.80937

8. We make the usual model validation plots. None of them gives us any reasons to worry about the
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validity of the model assumtions.
### Model validation
par(mfrow=c(2,2))
plot(reg1)
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9. We include extra predictors in the model, so we now get a multiple linear regression. The regression
coefficients are estimated to 4.12 for mother’s weight (lwt), 7.49 for age and 15.4 for number of visits
to the doctor (ftv). The interpretation of the last one, say, is that the birth weight is expected to
increase by 15.4 grams per extra visit by the doctor, all other predictors kept unchanged. Notice that
the estimate is not significantly different from zero (p=0.76) though.
### Include age and ftv as covariate
reg2 <- lm(bwt ~ lwt + age + ftv, data=birthData)
summary(reg2)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2223.505618 301.567140 7.3731694 5.402210e-12
## lwt 4.120744 1.757787 2.3442798 2.012498e-02
## age 7.485748 10.285178 0.7278189 4.676446e-01
## ftv 15.363944 51.113921 0.3005824 7.640705e-01

10. We make a new (boring dataset) with just one data line and values of each of the three predictors
from the multiple linear regression from the previous question. The predict function computes the
corresponding predicted value for the birth weight. It needs to know the predictor values as well as
which model to use for the prediction (you could try using reg1 instead of reg2; then you would get a
slightly different prediction). The interval option makes it possible to supplement the point prediction
with a 95% prediction interval, i.e., an interval that contains the birth weight for 95% of infants with
the given predictor characteristics.
### Prediction
newData <- data.frame(lwt=100, age=25, ftv=0)
newData
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## lwt age ftv
## 1 100 25 0
predict(reg2, newData)

## 1
## 2822.724
predict(reg2, newData, interval="prediction")

## fit lwr upr
## 1 2822.724 1390.148 4255.299

11. We use a different dataset for the regression, namely a subset constructed with the filter function.
There is just for the sake of the example, so we refrain from looking at the results in any detail.
### Use only data from mothers with weight below 160
reg3 <- lm(bwt ~ lwt + age + ftv, data=filter(birthData, lwt<160))
summary(reg3)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1824.063262 444.508301 4.1035528 0.0000651941
## lwt 7.182184 3.341787 2.1492047 0.0331503757
## age 9.178577 11.624301 0.7896024 0.4309508695
## ftv 16.986307 60.011783 0.2830495 0.7775117320

ANOVA

12. We use lm to fit the oneway ANOVA. The non-smokers (smoke=0) are used as reference, so the expected
birth weight for that group is given by the intercept, 3056 grams. For the estimate for smokers, we
must add the contrast/difference caused by the smoke variable (which is negative). We get 3056-284 =
2772. With emmeans we get both numbers automatically (but then not the difference). The p-value for
the effect of smoking is 0.0087, which can be found both from the summary and the pairs output, so
there is a statistically significant effect of smoking.
### Oneway ANOVA against smoke
oneway1 <- lm(bwt ~ smoke, data=birthData)
summary(oneway1)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3055.6957 66.93326 45.652875 2.463035e-103
## smoke1 -283.7767 106.96877 -2.652893 8.666726e-03
emmeans(oneway1,~smoke)

## smoke emmean SE df lower.CL upper.CL
## 0 3056 66.9 187 2924 3188
## 1 2772 83.4 187 2607 2937
##
## Confidence level used: 0.95
pairs(emmeans(oneway1,~smoke))

## contrast estimate SE df t.ratio p.value
## smoke0 - smoke1 284 107 187 2.653 0.0087

13. We now fit a another oneway ANOVA where visits from question 4 is used as the explanatory variable.
The groupwise estimated birth weights are most easily found with emmeans and are 2865 g, 3108 g,
and 2951 g, respectively. The output from pairs shows that none of the groups differ statistically
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significantly from each other (p-valuer are 0.14 or larger). Finally, the overall test gives a p-value of
0.17 (drop1), confirming that groups do not differ significantly.
### Oneway ANOVA against visits
oneway2 <- lm(bwt ~ visits, data=birthData)
emmeans(oneway2,~visits)

## visits emmean SE df lower.CL upper.CL
## Never 2865 72.6 186 2722 3008
## Once 3108 106.0 186 2899 3317
## MoreThanOnce 2951 112.0 186 2730 3172
##
## Confidence level used: 0.95
pairs(emmeans(oneway2,~visits))

## contrast estimate SE df t.ratio p.value
## Never - Once -242.9 128 186 -1.891 0.1441
## Never - MoreThanOnce -85.7 134 186 -0.642 0.7970
## Once - MoreThanOnce 157.1 154 186 1.019 0.5658
##
## P value adjustment: tukey method for comparing a family of 3 estimates
drop1(oneway2,test="F")

## Single term deletions
##
## Model:
## bwt ~ visits
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 98081730 2493.2
## visits 2 1887925 99969656 2492.8 1.7901 0.1698

14. A twoway ANOVA with both smoke and visits is fitted. It is the model without interaction because
there is a plus (+) between the two variables. Reference groups are chosen for each variable (smoke=0
corresponding to non-smokers and vists=Never), and the intercept 2981 g is the estimated birth weight
for the reference combination. For the contrast, the birth weight is estimated to decrease by 257 g if the
mother is a smoker, and to increase by 193 g and 74 g if the mother visits the doctor once or more than
once, respectively. We also get p-values for each of these contrasts, and conclusions are unchanged from
the oneway ANOVAs: There is a significant effect of smoking but not a significant effect of visiting the
doctor.
### Twoway ANOVA without interaction
twoway1 <- lm(bwt ~ visits + smoke, data=birthData)
summary(twoway1)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2980.91672 86.73734 34.3671676 3.021284e-82
## visitsOnce 192.77220 128.59583 1.4990548 1.355639e-01
## visitsMoreThanOnce 74.10202 131.98092 0.5614601 5.751634e-01
## smoke1 -257.28159 108.37493 -2.3739954 1.862096e-02

15. The twoway ANOVA with interaction is fitted by using a multiplication sign or star (*) between the
two variables. This allows for the effect os smoking to differ between visits groups, or vice versa.
The hypothesis of no interaction can be carried out with the anova function, where the models to be
compared (the models with and without interaction) are specified explicitly, or with drop1. The same
test is carried out, so we get the same p-value, 0.14. So, the interaction effect is not significant. By the
way, the function name anova is a bit annoying since it can be used for many model types, not only
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ANOVA models.
### Twoway ANOVA with interaction, test for interaction in two ways
twoway2 <- lm(bwt ~ visits * smoke, data=birthData)
anova(twoway2, twoway1)

## Analysis of Variance Table
##
## Model 1: bwt ~ visits * smoke
## Model 2: bwt ~ visits + smoke
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 183 93189162
## 2 185 95182096 -2 -1992934 1.9568 0.1443
drop1(twoway2,test="F")

## Single term deletions
##
## Model:
## bwt ~ visits * smoke
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 93189162 2489.5
## visits:smoke 2 1992934 95182096 2489.5 1.9568 0.1443

16. The emmeans function can be used to compute group-specific estimates, on average over the other
variables in the model. We get the estimated birth weights of 3066 g and 2772 g, respectively. This is
not exactly the same as in question 12: The estimates in question 12 were simple averages in the two
groups, while the new estimates are averages of estimates. This is not the same when the dataset is
unbalanced wrt. to the two variables.
emmeans(twoway2, ~smoke)

## NOTE: Results may be misleading due to involvement in interactions

## smoke emmean SE df lower.CL upper.CL
## 0 3066 70.1 183 2928 3205
## 1 2766 96.4 183 2576 2956
##
## Results are averaged over the levels of: visits
## Confidence level used: 0.95

Models with numerical as well as categorical predictors

17. model1 includes both a numerical and a categorical explanatory variable. Birth weight is estimated to
increase 4.24 g for each extra pound of mother’s weight (no matter the smoking status) and to differ 272
g for smoking and non-smoking mothers. The intercept is the estimated birth weight for a non-smoking
mother with a weight of zero pounds! This is of course nonsense - as is often the case with regression
type models when zero values of a numerical predictor cannot occur in practice.
### Model with linear (lwt,bwt) association.
### Intercept differ between smokers and non-smokers, one common slope.
model1 <- lm(bwt ~ lwt + smoke, data=birthData)
summary(model1)

##
## Call:
## lm(formula = bwt ~ lwt + smoke, data = birthData)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -2030.90 -445.69 29.16 521.76 1967.76
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2501.125 230.836 10.835 <2e-16 ***
## lwt 4.237 1.690 2.507 0.0130 *
## smoke1 -272.081 105.591 -2.577 0.0107 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 707.8 on 186 degrees of freedom
## Multiple R-squared: 0.06777, Adjusted R-squared: 0.05775
## F-statistic: 6.761 on 2 and 186 DF, p-value: 0.001464

18. Interaction between a numerical and categorical variable is interpreted as different slopes (wrt. the
numerical variable) for the different groups. Here, this means two straight lines (x=lwt and y=bwt), one
for smokers and one for non-smokers, with different intercepts and different slopes. The model from
question 17 had different intercepts, but the same slope. Both the intercept and the slope are reported
in terms of a reference groups (non-smokers) and a difference between smokers and non-smokers, and
the two estimated regression lines are therefore given by: bwt = 2351 + 5.39 * lwt for non-smokers
and bwt = (2351+41) + (5.39-2.42) * lwt = 2392 - 2.97 * lwt for smokers. The interaction term, as
reported the last line in the coefficients table, estimates the difference in the weight effect between
non-smokers and smokers, so this is where we should look to answer the last question. The p-value is
0.48, so there is no evidence that the effect of mother’s weight affects the birth weight is different for
smokers and non-smokers. The same test can be carried out by comparing to the additive model from
question 17, using the anova function.
### Model with linear (lwt,bwt) association. Intercept and slope both differ between visit groups
model2 <- lm(bwt ~ lwt * smoke, data=birthData)
summary(model2)

##
## Call:
## lm(formula = bwt ~ lwt * smoke, data = birthData)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2038.80 -454.76 28.36 530.84 1976.84
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2350.578 312.733 7.516 2.35e-12 ***
## lwt 5.387 2.335 2.307 0.0222 *
## smoke1 41.384 451.187 0.092 0.9270
## lwt:smoke1 -2.422 3.388 -0.715 0.4757
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 708.8 on 185 degrees of freedom
## Multiple R-squared: 0.07034, Adjusted R-squared: 0.05527
## F-statistic: 4.666 on 3 and 185 DF, p-value: 0.003621
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### Test if slopes differ between visit groups
anova(model2, model1)

## Analysis of Variance Table
##
## Model 1: bwt ~ lwt * smoke
## Model 2: bwt ~ lwt + smoke
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 185 92937722
## 2 186 93194298 -1 -256576 0.5107 0.4757

19. We now include more variables in the model. The model validation plots cause no worries. Smoking is
estimated to decrease infant birth weight by 244 g (SE 107 g), and the effect is statistically significant
(p=0.017).
### Model with many effects (no interactions)
model3 <- lm(bwt ~ lwt + smoke + age + visits, data=birthData)
par(mfrow=c(2,2))
plot(model3)
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summary(model3)

##
## Call:
## lm(formula = bwt ~ lwt + smoke + age + visits, data = birthData)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2024.13 -491.65 6.56 507.56 1753.25
##
## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2346.442 301.420 7.785 5e-13 ***
## lwt 4.167 1.727 2.413 0.0168 *
## smoke1 -244.402 107.187 -2.280 0.0238 *
## age 4.300 10.252 0.419 0.6754
## visitsOnce 184.314 130.194 1.416 0.1586
## visitsMoreThanOnce 32.318 133.410 0.242 0.8089
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 708.6 on 183 degrees of freedom
## Multiple R-squared: 0.08076, Adjusted R-squared: 0.05564
## F-statistic: 3.215 on 5 and 183 DF, p-value: 0.008306

Logistic regression

20. We now fit a logistic regression, modelling the probability of a low birthweight defines as <2500 g. The
effect of smoking is just not significant (p=0.06), which most likely reflects that we loose information
going from the actual birth weights to the binary version. Notice that the estimated coefficient for
smoking is now positive (0.62). This means that smoking increases the probability of getting a child
with low birth weight; hence the direction of a potential effect is still the same: Smoking increases the
likelihood of a smaller birth weight.
### Logistic regression with many predictors (no interactions)
logreg1 <- glm(low ~ lwt + smoke + age + visits, data=birthData, family="binomial")
summary(logreg1)

##
## Call:
## glm(formula = low ~ lwt + smoke + age + visits, family = "binomial",
## data = birthData)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.370311 1.016623 1.348 0.1777
## lwt -0.012276 0.006138 -2.000 0.0455 *
## smoke1 0.619077 0.330428 1.874 0.0610 .
## age -0.031764 0.033933 -0.936 0.3492
## visitsOnce -0.413043 0.424527 -0.973 0.3306
## visitsMoreThanOnce -0.148285 0.420965 -0.352 0.7247
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 234.67 on 188 degrees of freedom
## Residual deviance: 221.91 on 183 degrees of freedom
## AIC: 233.91
##
## Number of Fisher Scoring iterations: 4

Linear mixed models

21. We first make the artificial center variable as described in the exercise. You should of course never
make such a construct unless it reflects the data collection.
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### Make artificial center variable
set.seed(123)
center <- sample(rep(1:19, each=10)[1:189])
birthData <- mutate(birthData,center=factor(center))

22. We use the new variable as a random factor in a linear mixed model (LMM) and identify the relevant
estimate for smoking to be 244 g (SE 107). This is exactly the same as in the model without random
effects (question 19). That would typically not be the case, but happens here because the center-to-center
standard deviation is essentially estimated to zero (3.109e-06), which is not too surprising since the
center variable had nothing to do with actual data collection. Notice that the summary of an lmer
object does not provide p-values. There are ways to get those p-values, for example by using emmeans
or the lmerTest package instead of the the lme4 package, but we will not go into details about that
here.
### Remember to install lme4 before this can run
# install.packages("lme4")
library(lme4)

### Linear mixed model with random effect of center
lmm1 <- lmer(bwt ~ lwt + smoke + age + visits + (1|center), data=birthData)
summary(lmm1)

## Linear mixed model fit by REML ['lmerMod']
## Formula: bwt ~ lwt + smoke + age + visits + (1 | center)
## Data: birthData
##
## REML criterion at convergence: 2958
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.85637 -0.69380 0.00926 0.71625 2.47412
##
## Random effects:
## Groups Name Variance Std.Dev.
## center (Intercept) 2.447e-12 1.564e-06
## Residual 5.022e+05 7.086e+02
## Number of obs: 189, groups: center, 19
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 2346.442 301.420 7.785
## lwt 4.167 1.727 2.413
## smoke1 -244.402 107.187 -2.280
## age 4.300 10.252 0.419
## visitsOnce 184.314 130.194 1.416
## visitsMoreThanOnce 32.318 133.410 0.242
##
## Correlation of Fixed Effects:
## (Intr) lwt smoke1 age vstsOn
## lwt -0.613
## smoke1 -0.196 0.046
## age -0.620 -0.173 0.003
## visitsOnce -0.026 0.048 0.160 -0.218
## vstsMrThnOn 0.055 -0.058 0.031 -0.190 0.335
## optimizer (nloptwrap) convergence code: 0 (OK)
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## boundary (singular) fit: see help('isSingular')

End of solution
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