[TI. Graphics with ggplot2 (presentation)

Data Science Laboratory, University of Copenhagen

August 2025

Importing libraries and data

The examples below use the downloads dataset, which also was used for the presentation Working with data
in R. This dataset is available as an Excel file, which we will import using the readxl package. Furthermore,
ggplot?2 is part of the tidyverse package, so we also load that:

library(readxl)

library(tidyverse)

—- Attaching core tidyverse packages ———————————————————————- tidyverse 2.0.0 —-
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.1

v ggplot2 3.5.2 v tibble 3.3.0

v lubridate 1.9.4 v tidyr 1.3.1

v purrr 1.1.0

—- Conflicts ———————————————— tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()

x dplyr::lag() masks stats::lag()

i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become error

We read the downloads dataset from the Excel file, and assign it to a tibble named downloads. Moreover,
we only keep the observations, where the size variable is strictly larger than zero:

downloads <-
read_excel("downloads.x1lsx") %>%
filter(size > 0)

downloads

A tibble: 36,708 x 6

machineName userID size time date month

<chr> <dbl> <dbl> <dbl> <dttm> <chr>

1 cs18 146579 2464 0.493 1995-04-24 00:00:00 1995-04
2 csl18 995988 7745 0.326 1995-04-24 00:00:00 1995-04
3 csi8 317649 6727 0.314 1995-04-24 00:00:00 1995-04
4 cs18 748501 13049 0.583 1995-04-24 00:00:00 1995-04
5 cs18 955815 356 0.259 1995-04-24 00:00:00 1995-04
6 cs18 596819 15063 0.336 1995-04-24 00:00:00 1995-04
7 csi18 169424 2548 0.285 1995-04-24 00:00:00 1995-04
8 cs18 386686 1932 0.286 1995-04-24 00:00:00 1995-04
9 csi8 783767 7294 0.397 1995-04-24 00:00:00 1995-04
10 cs18 788633 4470 3.41 1995-04-24 00:00:00 1995-04

i 36,698 more rows

We manually make a Table-of- Variables with the meta-information about the variables in the dataset:

Variable Description Range Usage

machineName Name the server categorical (5 explanatory
levels)

userlD Id for user categorical (35811 not used
levels)

size download size in bytes numerical (3 to response
14518894)

time download time in seconds numerical (0.0437 response
to 1878.0762)

date download date date (Nov 22, 1994 explanatory
to May 18, 1995)

month month of the date categorical explanatory
(1994-11 to
1995-05)

ggplot2: The basic concepts

A ggplot-object is a syntactical description of a plot. You may think of it as a recipe in a cookbook. To
actually cook the dish, that is to make the plot, you print the ggplot-object. By default the results of all R
commands executed in the Console are automatically printed. Thus, as a result the plot will be generated
on the computer screen. If you execute an R script by sourcing, then you might need to print explicitly
using the print () command. Alternatively, you can use the ggsave () command to print the syntactical plot
description into a graphics file to be used in scientific papers and/or presentations.

To write down a recipe for a dish you usually start with a blank sheet of paper. We do the same for our
graphical recipes. The equivalent of a blank sheet of paper is generated by the command ggplot(). The
ingredients for our plot is a dataset, which should be available as a data.frame or as a tibble. We should
also specify what the ingredients should be used for. In the language of ggplot2 this is done by specifying
aesthetics via the aes () command.

Suppose we want to use data from the tibble downloads, and that machineName should be on the x-axis and
size on the y-axis. Then we write

ggplot(downloads,aes (x=machineName,y=size))

1.5e+07 -

1.0e+07 -

size

5.0e+06 -

0.0e+00 -

csl18 kermit piglet pluto tweetie
machineName

The reason that we don’t see any points, lines or the like is, of course, that we did not yet ask for such things
to be made! Geometrical objects like points and lines are called geoms in ggplot2. But although we did not
yet add any geoms to our plot, we see that the plot already recognized the range (and type) of the variables
specified in the aesthetics.

A simple bar chart

To make a bar chart we add geom_col() to the syntactical description. In the code below we have also
rescaled the size of the downloaded files to be measured in mega bytes instead of bytes. This is done by
downscaling the size variables by a factor 1,000,000.

ggplot(downloads, aes(x = machineName, y = size/1076)) +
geom_col()

150 -

© 100-

o

-

=~

(]

N

(%2}
50-
O_

cs18 kermit piglet pluto tweetie
machineName

We notice, that machineName used on the x-axis is a categorical variable. In R the levels of a categorical
variable by default are ordered alphabetically, which is also what we see on this plot. The y-axis shows the
total number of mega bytes for each machine, i.e., the sum over all observations from each machine. The sum
is computed automatically, but we could also have chosen to make those computations “manually” and made
the plot like this instead:
downloads %>%

group_by (machineName) %>%

summarize(size mb = sum(size/107°6)) %>%

ggplot (aes(x = machineName, y=size_mb)) + geom_col()

size mb

150 -

llOO-

50- I . I
0-

cs18 kermit piglet pluto tweetie
machineName

Then it is also obvious how to change the code if we wanted the average download size, say, rather than the
total download on the y-axis (try it yourself).

Flipping the bar chart

In the next R chunk we for the first time will try to save the syntactical description of a plot in an R, variable.
The benefit of doing this is that the syntactical description easily may be reused, possibly with variations. In
the metaphor of a recipe in a cookbook think of giving a piece of paper with the recipe of your favorite dish to
a friend. Then your friend may cook your dish, and possibly also with variations and new additions. Let’s
try out this idea, and write down the recipe for the bar chart in an R variable called p:

p <- ggplot(downloads, aes(x = machineName, y = size/1076)) +
geom_col()

This does not yet produce a new plot. But a variable called p has appeared in the global environment, and if
we gave the command p, then the graph would be plotted again. Now imagine you give the recipe to your
friend. Your friend is happy and thank you for the wonderful recipe, but decide to cook the bar chart with
horizontal bars instead of vertical bars. This is done by flipping the coordinate axes:

p + coord_flip()

tweetie - -‘l‘-l
pluto -
e -—-I
kermit - _-II
C518 - l-II

0 50

100 150
size/10"6

machineName

Adding monthly download info

We can extend the graphics further by adding new aesthetics and/or geoms. Looking at the help page
?geom_col we see that the fill-aesthetic will be interpreted by geom_col(). To see the effect of this aesthetic
on that geom we simply try it out.

p + aes(fill = month)

150 -

size/10"6
|_\
3

]
o
1

o
1

csl18 kermit

piélet

1 1
pluto tweetie

machineName

3
o
=
—
=

1994-11
1994-12
1995-01
1995-02
1995-03
1995-04
1995-05

We see that the bars have the same height as before, and still visualize the total download size. But now the
total download size also has been subdivided according to month. This is visualized by colors, and a legend
for the interpretation of the colors is automatically added in the right panel of the plot.

Some other bar chart options

Above we realized that setting the fill-aesthetic results in a subdivision of the contributions to the bars. How
this is displayed may be changed by setting the position-option in the geom_col() call. Let’s try it out!

p <- ggplot(downloads, aes(x =
p + geom_col(position =
p + geom_col(position =

machineName, y =
"dodge") ## Left/first plot
"fill") ## Right/second plot

size/10°6, fill = month))

15- oIl oI
1.00- ——
| 100411 I . — 1994-11
o 10- | 100412 o 075 . -. 1994-12
S B 1005015 — - 1995-01
— - 50 -
~ ~~ . | ———-3%
o B 100502 G - —1 | 1995-02
‘% 5- B — — .
I 1005-03 % §25- - — == - 1995-03
| 1995-04 -]] 1995-04
0- 0.00 - — L
o o [1995-05 [——|———— 1995-05
cs18 kermit piglet pluto tweetie cs18 kermitpiglet plutotweetie
machineName machineName
Caveat: Take a closer look at the output delivered via position = "dodge". Is it doing what you want?

EN{

Or what you expected it to do? My guess is that it isn’t, and that you presumably wanted and expected the
output from the following:

downloads %>%
group_by (machineName,month) %>
summarize(size mb = sum(size/10°6)) %>%
ggplot(aes(x = machineName, y=size_mb, fill=month)) + geom_col(position = "dodge")

~summarise()” has grouped output by 'machineName'. You can override using the
° .groups’ argument.

60 -
month
| 100411
| 100412
'gl 0 I 1005-01
_% I 1005-02
I 1005-03
| 1995-04
20- | 1095-05
0-

cs18 kermit piglet pluto tweetie
machineName

Very tricky question: Can you explain what is doing on here? (You might want to ask the teacher about this!)

A bar chart with ordered bars

Suppose we like the machines in the bar chart to be ordered according to increasing download size. One way to
achieve this is to recode the variable machineName as a factor (in R categorical variables are called factors)
with levels ordered according to increasing download size. Using the techniques presented in Working with
data in R we generate a tibble containing the total download size from the five different machines, which
we thereafter ordered according to total download size:

dl_sizes <- downloads %>’
group_by (machineName) 7%>7
summarize(size_mb = sum(size)/1076) %>’
arrange(size_mb)

dl_sizes

A tibble: 5 x 2

machineName size_mb

<chr> <dbl>
1 pluto 72.6
2 cs18 101.
3 tweetie 104.
4 piglet 158.
5 kermit 175.

Thereafter we recode the machineName variable, so that the levels appear in increasing size according to
total download size:

downloads <- downloads %>%
mutate (machineName = factor(machineName, levels = dl_sizes$machineName))

Finally, we can make the plot using the same ggplot () code as above. Thus, the same ggplot () code with
a changed dataset (remember, that we made a new ordering of the levels of the variable machineName) will
give a new plot:

ggplot(downloads, aes(x = machineName, y = size/107°6)) +
geom_col()

150 -

=

o

o
1

(o]
<
o
=
~
()
N
n

50 -

1 1 1 1 1
pluto cs18 tweetie piglet kermit
machineName

Daily summary statistics

Next we want to visualize the number and the total size of the downloads done each date for each of the 6
machines. For later usage we also compute the cumulated number of downloads within each of the 6 machines
over the dates. We do this via the following steps:

1. Using group_by() we group the dataset by both machineName and date.

2. Using summarize () we count the number and the total size of the downloads for within each machine
and date.

3. Using mutate () we cumulate the number of downloads over the dates within the machines. We remark
that cumsum makes the cumulative sum over the innermost grouping variable, which is date.

daily_downloads <- downloads %>’
group_by (machineName, date) 7>
summarize(dl_count = n(), size_mb = sum(size)/10°6) %>%
mutate(total_dl_count = cumsum(dl_count))

~summarise()” has grouped output by 'machineName'. You can override using the
~ .groups’ argument.

daily_downloads

A tibble: 337 x 5
Groups: machineName [5]

machineName date dl_count size_mb total_dl_count
<fct> <dttm> <int> <dbl> <int>
1 pluto 1995-01-18 00:00:00 50 0.141 50
2 pluto 1995-01-24 00:00:00 141 5.38 191
3 pluto 1995-01-25 00:00:00 26 0.0986 217
4 pluto 1995-01-26 00:00:00 371 6.44 588
5 pluto 1995-01-27 00:00:00 32 0.130 620
6 pluto 1995-01-29 00:00:00 77 0.915 697
7 pluto 1995-01-30 00:00:00 48 0.281 745
8 pluto 1995-01-31 00:00:00 128 1.71 873
9 pluto 1995-02-01 00:00:00 142 1.22 1015
10 pluto 1995-02-02 00:00:00 347 2.44 1362

i 327 more rows

A simple scatter plot

To make a scatter plot we use geom_point (). We save the ggplot-description in the variable p, so that it is
easy to try out different layout features on the same plot. Please note that this, of course, will overwrite the
previous content of p (which happened to be the description of the bar charts). Thus, after executing the
following R chunk, p will contain the description of a scatter plot.

p <- ggplot(daily_downloads, aes(x = date, y = dl_count)) +
geom_point ()
p

10

600 - o
[
°
° — .
- 400 - L o ° Sl
: . .
(@) L4 (]) [L []
gl S *% - C : * O
° o ° ’ “, "
e
1 ~. ° o % o .0 o *° °
200- o P o e o
L °° ° o« ° o ° ¢ °
o
°) ‘.r.e:‘ P °:. . .. ° ':..
o ° 0
| i ° . . o..:.:. o ? &..: O o 0. ..*0.0.0.0:
° °
o see e, % :-3 '°.h'c. S ‘Qﬁu - P V"
Dlec J(;m Feb Mar Apr Mlay
date

Plotting on the log-scale

To change the y-axis to be logarithmic we add scale_y_log10(). Please note, that for visualizations we often
prefer the base-10 logarithm (whereas statisticians often use the natural logarithm for modeling). However,
for some applications the natural logarithm or the base-2 logarithm might be the preferable choice.

p <- p + scale_y_logl0()
P

11

°
L S ° = °
® o : T ®) : : * .)
300~ A T
‘e ®e o ° o % ° o% o: o® °
¢ °° ° ° % :’ . O ° °
.) '“‘.03 o e, Lo
100 - ° é § © P °
° ° ... o © ? .. [] ° 2
A .o. o ® e % © .o ® o () 0..0
= B o e o % ¢ ¥ 8- oo
S * o o ° ° .
3 o, & o0 oo * Y .
° °
°I 30- s °, T e o, o . A O .
5 o © ° ° @ o °® ° G° Py ¢ o
* ° LA 8 .° * o * ¢]
e M e o o 8 H
o ® ® o o Y ® o ® b
10~ . o o ° ° . ®e o ® °
° ° o o o o o % . .
° ° X o ® o ° °
° ° °
3- ° ° °
° ™
Dlec J(;m Féb Mlar A;or Mlay
date

Points colored by machine

Remember, that p presently encodes a scatterplot, which is made using geom_point (). To color the points
according to machineName we simply add this as an aesthetic.

p + aes(color = machineName)

12

°°, . .
o , %o °* °
300- S S A I A A
., o... ° % . .:.o 1
¢ Oy e o o) :’ o ©° ¢ °
'S ° ° oo
¢ "i' ® O.‘. o: o
100 - o e v ']
° %0 0 °T o, ° v
° ‘e °o® :~ o 0% G 040
°
- ° - ° - *%. % ‘.‘ e .“
c (] ° [}
3 LI 2 % & % L °
EI 30- % ° ° ¢ ° % : %o % o’ o o".
5 o ©® e o @ o ® o e o "
¢ ce g ® ° ® s e
o e o 0 S g o
B ™ X e OO ° °
° ° o [Lo ®
10~ 2 e o ° ° g e o® o
° ° o o o0 o % ° .
° ° XX e ®eo ° °
° ° °
3- o ° °
° ®o
Déc Jén Féb Mhr Abr M%y
date

Points shaped by machine

Alternatively, we can visualize the five different machines by different plotting symbold. This is done by

adding a shape aesthetic instead.

p + aes(shape = machineName)

13

machineName

pluto
cs18
tweetie
piglet
kermit

®
®t o K
B x + +
. +
300- Loa E-;;E-' " e E++g_§l JE+
'Y "
A 2. ora 7Y em i
A A n
A B = + +° . LB
A STy e n e Lt R _
100 - 8t u B 8+ T oA machineName
& +§+. + t ° iz H Rgm
t a t ® ta + + e pluto
= e Trey B w7 s
=) a é ar * R " % 4 A cs18
8 A A AL L] L] u %l .
| 30- S —— ; o o A, = tweetie
ie; A A A A 2 + n R +
A . P i+£ + piglet
A R wA+A :_' « B :
A AA " = EA o« _F|_ At A B kermit
10~ | [] A
A A T] i_ A IZI+ . lE - Ax :
A A ABbdo o B m n —+
A ® ®
3- A] +
+]
Dec Jan Feb Mar Apr May
date

Please note that ggplot2 only contains six different plotting symbols. If you use the shape aesthetic on a
categorical variable with more than 6 levels, then you get the following error message:

> p + aes(shape = factor(size_mb))
Warning messages:
1: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes difficult

discriminate; you have 337. Consider specifying shapes manually if you must have them.
2: Removed 331 rows containing missing values (geom_point).

Bubble plot

The bubble plot is an extension of the classical scatter plot. Recall, that a scatter plot displays two numerical
variables via the x-axis and the y-axis. The idea of the bubble plot is to visualize a third numerical variable
by letting it encode the size of the points. The best human perception of size is achieved when the area (and
not the diameter, say) of the points is taken to be proportional to this third numerical variable. This is
exactly what is achieved by the size aesthetic:

p + aes(size = size_mb)

14

... .
o o ..
o o e .. o (°®
300- o ® o ..&0' ° 9 o%%e
o _Veo, ©O® o“f, [
@ oo °_ 08 o2 9 .
° .f" e ° .. %. [X}
100- o Q¥ * ° g,
° ope o ° ? o ® o% o 0g0 :
® o o ® o, . o° size_mb
- L ® ° ®%e ;’ () oo
c L ° ° °) L
S °°® & . (Y ° ® 10
S . ? * . R %o
1 30- e ", °* % o ,° o 0 O e, @
o o © ° (] 4 ° O &] ° '
® ece g °* ° ®] Pe . 30
- ® o o RS ‘ o 8 g
°® ® . 'Y Qo ® =
[]
10- [) [] S ° [] : [) .. N .. ® ... ®
[) [) [)
[) [] o ® 0 [) ® o [] []
[) [) [)
3- [[) []
[) [)
Dlec Jalm Féb Mlar Alpr l\/|:31y
date

Please note, that “size” appearing on the left hand side is the name of the aesthetic known by ggplot2,
whereas “size_mb” on the right hand side is the name of the variable inside the tibble downloads. It does not
come as a surprise that the total download size is often large (large points) when the number of downloaded
packages is large (large value on y-axis).

Points colored by download size

The ideas exemplified above may be combined. E.g. to make a stronger visualization of the daily total
download size we may choose to make a combined usage of the size and the color aesthetic.

p + aes(size = size_mb, color = size_mb > 2)

15

0.0 o o
300- o ® o e‘&.' ° 9 0%%e .°
P W IR
[J o :
o *erm.?. - SRR Y B szemp
100- o Q¥ s °p° @® w0
° ke o ¢ ° o
e % e® e 0 0%, MO0 @
= @ o o e, elg Ve P
5 s 0 & % * o . @ =
o® L4 ° e
1 30- ° °, °* % o ,° FLle & e,
o o © °] 4 ° Ol] ° ' .
‘ ceo ¢ . ° s Po size_mb > 2
> o o ° el memE ®
o® “ ° . | S o ® FALSE
10- .. o o ° ° y ®e o° o e TRUE
[o o e o . .. o .
[] [) o ®e o ® o [] [)
[] [] []
3_ [] [] []
[} []
D:ac Jelm Féb Mlar Alpr Mlay
date

From the inserted legend in the right panel of the plot it should be clear how the colors are to be interpreted.

Faceting

Faceting is a clever way of visualizing additional categorical variables (one, two, or even more of them) by
dividing the plot into several panels (either along the rows, the columns, or both the row and the columns).
Here is an example:

p + facet_wrap(~machineName)

16

pluto
[Y B
300- e o
°-~.o °
100 - .. (.:
oo o O
30- f 4
'. 'Y
10- =
o &
A 3-
c
3
OI piglet
© o™
300 - ° .”.:’.
o Y. 0L
100 - ..0 s o
v o 5, '.‘&.
30- ° o ® e
T
10- e ?
°
3- °
°

Dec Jan Feb Mar Apr May

And here is another one:

p + facet_grid(. ~ machineName)

csl8
i i
° ° "
.‘.. .. [}
8o, v °
-3 IS °® L d
o ©° o0 :‘ ®e
c o ° o o e
) o o
.
kermit
o %
.‘3....:. (]
el
o % 3
oo *g,0
o9
° .o o °
.

Dec Jan Feb Mar Apr May
date

17

tweetie

Dec Jan Feb Mar Apr May

piglet kermit

pluto cs18 tweetie
1 °
[] () ® [T [] °
®
300 - -, o f° o . %o o o
- ° o ©® g o... .: ° $ °
e ©® :‘ ... ? .:. 1 ° : ..
% ° ain ° .., AL .} < :o °
100 - IR o © o® [.o o8 S
Tl B 1 o o o % 8 ° 9
- i+ o, 0 o ° o % °
c] 4 LA ®e
> Soo, ®oo o Q ° o ® o
3 Ay 1) r ° Ly) . §
_ | 30- T ? LI ° °
o] f... []:
* '; ° °® ° AR oo ...
° SHIET C Tt o go °
1 ° o
10- ° e *% ° o o
° o0 ° o o ° °
° o o °
oo e o® oo ° °
° o o
3- o ° °
° ° °

DedarFeiMaApMay DedarFetMarpMay DedarFeiMaApMay DedarfFeiMaApMay DedarFeiMaipMay
date

Cumulated total download size over the dates within machines

The geom called geom_line() is used to insert lines. In the code below you see a first attempt to write R
code that visualizes the cumulated total download size over the dates.
total_dl_count)) +

ggplot(daily_downloads, aes(x = date, y =
geom_line()

18

9000 -

D
o
o
o
1

total_dl_count

3000 -

Dec Jan Feb Mar Apr May
date

However, in the code above we forgot to make the lines within the machines. This may be achieved by adding
a group aesthetic as shown in the following code.

ggplot(daily_downloads, aes(x = date, y = total_dl_count)) +
geom_line(aes(group = machineName))

19

9000 -

I
>
)
OI 6000 -
6I
<
8
3000 - _J/———’j
0 -
Dlec Jz;m Féb Mlar A;or Mlay
date
A box plot

Let’s also try to make a boxplot. ..

p <- ggplot(daily_downloads, aes(x = machineName, y = size_mb)) + geom_boxplot()
p

20

30-
°
°
20-
o
EI
Q
N
n
°
s I .
i [)
10 ° ° [} L
°)
) ® ! T
° : °
°
L A
0 A L | ! I] I | L |
pluto csl8 tweetie piglet kermit

machineName

But perhaps the boxplot is more informative on the log-scale? Let’s try it out!

p + scale_y_logl0()

21

10.00 -

1.00-
o)
EI
@
N
n
0.10-
0.01-
°
pluto csl8 tweetie piglet kermit

machineName

An alternative to the classical boxplot is the so-called violin plot, which show the full probability distribution:

ggplot(daily_downloads, aes(x = machineName, y =

size_mb)) + geom_violin() + scale_y_logl0()

22

size_mb

10.00 -
1.00-
0.10-
0.01-

pluto csl8 tweetie piglet kermit
machineName

Saving plots

ggplots easily can be printed to a graphical device. The following code saves the most recently produced plot
to a pdf-file called violin.pdf. Please note that ggsave() guesses the graphics format from the file name:

ggsave("violin.pdf")

Saving 6.5 x 4.5 in image

If a plot has been saved as an object, like p above, then it can be saved with ggsave () even if is not printed
on the screen. Moreover, the size of the image can be changed if needed, as this command shows:

ggsave("p-plot.pdf", p, width=10, height=5)

Conclusion
1. The ggplot2 package is a powerful and versatile tool for making plots.
2. We think, that the generated plots are beautiful.
3. As far as we know some plots, e.g. using faceting, in practice are only producible in ggplot2.

4. Learning the syntax needed for making specific plots is a challenge. The best way (the only way!?) to
learn is to practice. You may start by solving the exercise sheet. After you have gotten used to the
basic ideas you can find a lot of help on the internet. We remark, that there have been several updates
of the ggplot2 package over the recent years, and some of the old entries that pop up when you google
a ggplot2-issue might be outdated.

23

5. Not all things can be made in ggplot2! For a geometrical object to be available it need to have a
syntactical description, and it needs to be implemented. Other things require computer-hacks to be
made (e.g. using different orderings of categorical variables in faceted plots).

6. Many geoms make statistical computations before the actual plot is made. This can be very practical.
However, occasionally the computation done isn’t want you perhaps wanted. As e.g. was the case with
geom_col(position = "dodge"). When in doubt, it can be more safe to do the needed computations
manually (i.e. via tidyverse and dplyr).

End of presentation.

24

	Importing libraries and data
	ggplot2: The basic concepts
	A simple bar chart
	Flipping the bar chart
	Adding monthly download info
	Some other bar chart options
	A bar chart with ordered bars
	Daily summary statistics
	A simple scatter plot
	Plotting on the log-scale
	Points colored by machine
	Points shaped by machine
	Bubble plot
	Points colored by download size
	Faceting
	Cumulated total download size over the dates within machines
	A box plot
	Saving plots
	Conclusion

